Corpus Linguistics: Inter-Annotator Agreements

Karën Fort

December 15, 2011

Karën Fort (karen.fort@inist.fr)

Inter-Annotator Agreements

▶ < ≧ ▶ < ≧ ▶ ≧ December 15, 2011 1 / 32

___ ▶

Sources

Most of this course is largely inspired by:

- THE reference article: Inter-Coder Agreement for Computational Linguistics [Artstein and Poesio, 2008]
- Massimo Poesio's presentation at LREC on the same subject
- Gemma Boleda and Stefan Evert's course on the same subject (ESSLLI 2009) [http://esslli2009.labri.fr/course.php?id=103]
- Cyril Grouin's course on the measures used in evaluation protocols [http://perso.limsi.fr/grouin/inalco/1011/]

Introduction

Crucial issue: Are the annotations correct?

- ML learns to make same mistakes as human annotator (noise ≠ patterns in errors [Reidsma and Carletta, 2008])
- Misleading evaluation
- Inconclusive and misleading results from linguistic analysis and hand-crafted systems

< 回 > < 三 > < 三 >

• We are interested in the validity of the manual annotation

• i.e. whether the annotated categories are correct

• But there is no "ground truth"

- Linguistic categories are determined by human judgment
- Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators consistently make same decisions ⇒ they have internalized the scheme
 - Assumption: high reliability implies validity
- How can reliability be determined?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• We are interested in the validity of the manual annotation

• i.e. whether the annotated categories are correct

• But there is no "ground truth"

- Linguistic categories are determined by human judgment
- Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators consistently make same decisions ⇒ they have internalized the scheme
 - Assumption: high reliability implies validity
- How can reliability be determined?

(日) (同) (三) (三)

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct

• But there is no "ground truth"

- Linguistic categories are determined by human judgment
- Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators consistently make same decisions ⇒ they have internalized the scheme
 - Assumption: high reliability implies validity
- How can reliability be determined?

(日) (同) (三) (三)

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct
- But there is no "ground truth"
 - Linguistic categories are determined by human judgment
 - Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators consistently make same decisions ⇒ they have internalized the scheme
 - Assumption: high reliability implies validity
- How can reliability be determined?

イロト 不得下 イヨト イヨト

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct
- But there is no "ground truth"
 - Linguistic categories are determined by human judgment
 - Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators consistently make same decisions ⇒ they have internalized the scheme
 - Assumption: high reliability implies validity
- How can reliability be determined?

イロト 不得下 イヨト イヨト

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct
- But there is no "ground truth"
 - Linguistic categories are determined by human judgment
 - Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators consistently make same decisions \Rightarrow they have internalized the scheme
 - Assumption: high reliability implies validity
- How can reliability be determined?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct
- But there is no "ground truth"
 - Linguistic categories are determined by human judgment
 - Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators $\mbox{consistently}$ make same decisions \Rightarrow they have internalized the scheme
 - Assumption: high reliability implies validity
- How can reliability be determined?

イロト 人間ト イヨト イヨト

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct
- But there is no "ground truth"
 - Linguistic categories are determined by human judgment
 - Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators consistently make same decisions \Rightarrow they have internalized the scheme
 - Assumption: high reliability implies validity

• How can reliability be determined?

- 4 同 6 4 日 6 4 日 6

- We are interested in the validity of the manual annotation
 - i.e. whether the annotated categories are correct
- But there is no "ground truth"
 - Linguistic categories are determined by human judgment
 - Consequence: we cannot measure correctness directly
- Instead measure reliability of annotation
 - i.e. whether human annotators consistently make same decisions \Rightarrow they have internalized the scheme
 - Assumption: high reliability implies validity
- How can reliability be determined?

・ 同 ト ・ ヨ ト ・ ヨ ト

Achieving Reliability (consistency)

- each item is annotated by a single annotator, with random checks (pprox second annotation)
- some of the items are annotated by two or more annotators
- each item is annotated by two or more annotators followed by reconciliation
- each item is annotated by two or more annotators followed by final decision by superannotator (expert)

In all cases, measure of reliability: coefficients of agreement

- 4 同 6 4 日 6 4 日 6

Particular Case: Gold-standard

In some (rare and often artificial) cases, there exists a "reference": the corpus was annotated, at least partly, and this annotation is considered "perfect", a reference [Fort and Sagot, 2010].

In those cases, another, complementary measure, can be used:

Which one?

Particular Case: Gold-standard

In some (rare and often artificial) cases, there exists a "reference": the corpus was annotated, at least partly, and this annotation is considered "perfect", a reference [Fort and Sagot, 2010].

In those cases, another, complementary measure, can be used:

F-measure

• Recall:

- Silence:
- Precision:

• Noise:

イロト イヨト イヨト イヨト

• Recall: measures the quantity of found annotations

 $Recall = \frac{Nb \text{ of correct found annotations}}{Nb \text{ of correct expected annotations}}$

- Silence:
- Precision:

• Noise:

∃ → (∃ →

• Recall: measures the quantity of found annotations

 $Recall = \frac{Nb \ of \ correct \ found \ annotations}{Nb \ of \ correct \ expected \ annotations}$

Silence: complement of recall (correct annotations not found)Precision:

• Noise:

A 12 N A 12 N

• Recall: measures the quantity of found annotations

 $Recall = \frac{Nb \text{ of correct found annotations}}{Nb \text{ of correct expected annotations}}$

- Silence: complement of recall (correct annotations not found)
- Precision: measures the quality of found annotations

 $Precision = \frac{Nb \text{ of correct found annotations}}{Total \text{ nb of found annotations}}$

• Noise:

• Recall: measures the quantity of found annotations

 $Recall = \frac{Nb \ of \ correct \ found \ annotations}{Nb \ of \ correct \ expected \ annotations}$

- Silence: *complement* of recall (correct annotations not found)
- Precision: measures the quality of found annotations

$$Precision = \frac{Nb \text{ of correct found annotations}}{Total \text{ nb of found annotations}}$$

• Noise: complement of precision (incorrect annotations found)

- 4 周 ト 4 日 ト 4 日 ト

F-measure: back to basics (Wikipedia Dec. 10, 2010)

Harmonic mean of precision and recall or balanced F-score

 $F = 2 \times \frac{\text{precision } \times \text{ recall}}{\text{precision } + \text{ recall}}$

... aka the F1 measure, because recall and precision are evenly weighted.

It is a special case of the general $\mathsf{F}\beta$ measure:

$$F\beta = (1 + \beta^2) \times \frac{\text{precision } \times \text{ recall}}{\beta^2 \times \text{ precision } + \text{ recall}}$$

The value of β allows to favor:

- recall ($\beta = 2$)
- precision ($\beta = 0.5$)

True and false, positive and negative:

	Disease is present	Disease is absent
Positive test		
Negative test		

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

True and false, positive and negative:

	Disease is present	Disease is absent
Positive test	TP	
Negative test		TN

Karën Fort (karen.fort@inist.fr)

Inter-Annotator Agreements

December 15, 2011 9 / 32

- 3

イロン 不聞と 不同と 不同と

True and false, positive and negative:

	Disease is present	Disease is absent
Positive test	TP	FP
Negative test	FN	TN

- 3

・ロン ・四 ・ ・ ヨン ・ ヨン

• sensitivity: corresponds to recall

 $SE = \frac{true \ positives}{true \ positives + false \ negatives}$

• specificity: rate of true negatives

 ${\it SP}=rac{true\ negatives}{true\ negatives\ +\ false\ positives}$

• selectivity: corresponds to precision

 $SEL = \frac{true \ positives}{true \ positives + false \ positives}$

• accuracy: nb of correct predictions over the total nb of predictions

$$ACC = \frac{true \ positives + true \ negatives}{TP + FP + FN + TN}$$

Karën Fort (karen.fort@inist.fr)

Inter-Annotator Agreements

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

• sensitivity: corresponds to recall

 $SE = \frac{true \ positives}{true \ positives + false \ negatives}$

• specificity: rate of true negatives

 $SP = \frac{true \ negatives}{true \ negatives + false \ positives}$

• selectivity: corresponds to precision

 $SEL = \frac{true \ positives}{true \ positives + false \ positives}$

• accuracy: nb of correct predictions over the total nb of predictions

$$ACC = \frac{true \ positives + true \ negatives}{TP + FP + FN + TN}$$

Karën Fort (karen.fort@inist.fr)

Inter-Annotator Agreements

December 15, 2011 10 / 32

• sensitivity: corresponds to recall

 $SE = \frac{true \ positives}{true \ positives + false \ negatives}$

• specificity: rate of true negatives

 $SP = \frac{true \ negatives}{true \ negatives + false \ positives}$

• selectivity: corresponds to precision

 $SEL = \frac{true \ positives}{true \ positives + \ false \ positives}$

• accuracy: nb of correct predictions over the total nb of predictions

$$ACC = \frac{true \ positives + true \ negatives}{TP + FP + FN + TN}$$

Karën Fort (karen.fort@inist.fr)

Inter-Annotator Agreements

December 15, 2011 10 / 32

• sensitivity: corresponds to recall

 $SE = \frac{true \ positives}{true \ positives + false \ negatives}$

• specificity: rate of true negatives

 $SP = \frac{true \ negatives}{true \ negatives + false \ positives}$

• selectivity: corresponds to precision

 $SEL = \frac{true \ positives}{true \ positives + false \ positives}$

• accuracy: nb of correct predictions over the total nb of predictions

$$ACC = \frac{true \ positives + true \ negatives}{TP + FP + FN + TN}$$

Karën Fort (karen.fort@inist.fr)

Does a "Gold-standard" exist?

- reference rarely pre-exists
- can it be "perfect"? [Fort and Sagot, 2010]
- $\rightarrow\,$ can we use F-measure in other cases? Reading for next class!
- \Rightarrow Back to coefficients of agreement.

Easy and Hard Tasks

[Brants, 2000] for POS and Syntax, [Véronis, 2001] for WSD.

Objective tasks

- Decision rules, linguistic tests
- Annotation guidelines with discussion of boundary cases
- POS tagging, syntactic annotation, segmentation, phonetic transcription, . . .

Subjective tasks

- Based on speaker intuitions
- Short annotation instructions
- Lexical semantics (subjective interpretation!), discourse annotation & pragmatics, subjectivity analysis, . . .

イロト 人間ト イヨト イヨト

Easy and Hard Tasks

[Brants, 2000] for POS and Syntax, [Véronis, 2001] for WSD.

Objective tasks

- Decision rules, linguistic tests
- Annotation guidelines with discussion of boundary cases
- POS tagging, syntactic annotation, segmentation, phonetic transcription, . . .
- ightarrow IAA = 98.5% (POS tagging) IAA pprox 93.0% (syntax)

Subjective tasks

- Based on speaker intuitions
- Short annotation instructions
- Lexical semantics (subjective interpretation!), discourse annotation & pragmatics, subjectivity analysis, . . .

イロト 人間ト イヨト イヨト

Easy and Hard Tasks

[Brants, 2000] for POS and Syntax, [Véronis, 2001] for WSD.

Objective tasks

- Decision rules, linguistic tests
- Annotation guidelines with discussion of boundary cases
- POS tagging, syntactic annotation, segmentation, phonetic transcription, . . .

ightarrow IAA = 98.5% (POS tagging) IAA pprox 93.0% (syntax)

Subjective tasks

- Based on speaker intuitions
- Short annotation instructions
- Lexical semantics (subjective interpretation!), discourse annotation & pragmatics, subjectivity analysis, . . .

 \rightarrow IAA = 68.6% (HW) IAA \approx 70% (word senses)

イロト 不得下 イヨト イヨト

Example

А	В	Agree?
1	1	1
×	1	×
×	×	1
✓	1	1
1	×	×
	✓ ×	✓ ✓ × ✓

\rightarrow Agreement?

3

<ロ> (日) (日) (日) (日) (日)

Contingency Table and Observed Agreement

		A		
		Yes	No	Total
В	Yes	4	2	6
	No	2	2	4
	Total	6	4	10

Observed Agreement (A_o)

proportion of items on which 2 annotators agree.

Here:

Karën Fort (karen.fort@inist.fr)

3

- 4 目 ト - 4 日 ト - 4 日 ト

Contingency Table and Observed Agreement

		A		
		Yes	No	Total
В	Yes	4	2	6
	No	2	2	4
	Total	6	4	10

Observed Agreement (A_o)

proportion of items on which 2 annotators agree.

Here:
$$A_o = \frac{4+2}{10} = 0.6$$

Karën Fort (karen.fort@inist.fr)

3

- 4 週 ト - 4 三 ト - 4 三 ト

Chance Agreement

Some agreement is expected by **chance alone**: In our case, what proportion of agreement is expected by chance?

3

- 4 目 ト - 4 日 ト - 4 日 ト

Chance Agreement

Some agreement is expected by chance alone:

- Two annotators randomly assigning "Yes" and "No" labels will agree half of the time (0.5 can be obtained purely by chance: what does it mean for our result?).
- The amount expected by chance varies depending on the annotation scheme and on the annotated data.

Meaningful agreement is the agreement above chance.

 \rightarrow Similar to the concept of "baseline" for system evaluation.

- 4 同 6 4 日 6 4 日 6

Taking Chance into Account

Expected Agreement (A_e)

expected value of observed agreement.

Amount of agreement above chance: $A_o - A_e$ Maximum possible agreement above chance: $1 - A_e$

Proportion of agreement above chance attained: $\frac{A_o - A_e}{1 - A_o}$

Perfect agreement: $\frac{1-A_e}{1-A_e}$ Perfect disagreement: $\frac{-A_e}{1-A_e}$

イロト 不得 トイヨト イヨト

How to compute the amount of agreement expected by chance (A_e) ?

Karën Fort (karen.fort@inist.fr)

Inter-Annotator Agreements

December 15, 2011 17 / 32

S [Bennett et al., 1954]

S

Same chance for all annotators and categories.

Number of category labels: qProbability of one annotator picking a particular category q_a : $\frac{1}{q}$ Probability of both annotators picking a particular category q_a : $(\frac{1}{q})^2$

Probability of both annotators picking the same category:

$$A_e^S = q.(\frac{1}{q})^2 = \frac{1}{q}$$

Karën Fort (karen.fort@inist.fr)

S Coefficient

All the categories are equally likely: consequences

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

Karën Fort (karen.fort@inist.fr)

Inter-Annotator Agreements

December 15, 2011 19 / 32

3

イロン 不聞と 不同と 不同と

All the categories are equally likely: consequences

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

$$A_o = \frac{20+20}{50} = 0.8$$

$$A_e^S = \frac{1}{2} = 0.5$$

$$S = \frac{0.8-0.5}{1-0.5} = 0.6$$

< 一型

All the categories are equally likely: consequences

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

< 4 ► >

$$A_o = \frac{20+20}{50} = 0.8$$

$$A_e^S = \frac{1}{2} = 0.5$$

$$S = \frac{0.8-0.5}{1-0.5} = 0.6$$

All the categories are equally likely: consequences

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$A_o = \frac{20+20}{50} = 0.8$$
$$A_e^S = \frac{1}{2} = 0.5$$
$$S = \frac{0.8-0.5}{1-0.5} = 0.6$$

$$A_o = \frac{20+20}{50} = 0.8$$

$$A_e^S = \frac{1}{4} = 0.25$$

$$S = \frac{0.8-0.25}{1-0.25} = 0.73$$

Image: A math a math

π [Scott, 1955]

π

Different chance for different categories.

Total number of judgments: NProbability of one annotator picking a particular category q_a : $\frac{n_{q_a}}{N}$ Probability of both annotators picking a particular category q_a : $(\frac{n_{q_a}}{N})^2$

Probability of both annotators picking the same category:

$$\mathcal{A}^{\pi}_e = \sum_{\boldsymbol{q}} (rac{n_q}{N})^2 = rac{1}{N^2} \sum_{\boldsymbol{q}} n_q^2$$

イロト 人間ト イヨト イヨト

Comparing S and π

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$egin{aligned} \mathcal{A}_o &= 0.8 \ \mathcal{S} &= \mathbf{0.6} \end{aligned}$$

$$\begin{aligned} A_o &= 0.8\\ S &= \mathbf{0.73} \end{aligned}$$

<ロ> (日) (日) (日) (日) (日)

Comparing S and π

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Tota	l 25	25	0	0	50

 $A_{o} = 0.8$ *S* = **0.6** $\begin{array}{l} {\cal A}_e^{\pi} = \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5 \\ {\pi} = \frac{0.8 - 0.5}{1 - 0.5} = \textbf{0.6} \end{array}$

 $A_{o} = 0.8$ *S* = **0.73**

Comparing S and π

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$\begin{aligned} &A_o = 0.8\\ &S = \mathbf{0.6}\\ &A_e^{\pi} = \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ &\pi = \frac{0.8-0.5}{1-0.5} = \mathbf{0.6} \end{aligned}$$

$$A_o = 0.8$$

$$S = 0.73$$

$$A_e^{\pi} = \frac{\left(\frac{(25+25}{2})^2 + \left(\frac{25+25}{2}\right)^2\right)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

κ [Cohen, 1960]

κ

Different annotators have different interpretations of the instructions (bias/prejudice). κ takes individual bias into account.

Total number of items: *i*
Probability of one annotator
$$A_x$$
 picking a particular category q_a : $\frac{n_{A_xq_a}}{i}$
Probability of both annotators picking a particular category q_a : $\frac{n_{A_1q_a}}{i}$, $\frac{n_{A_2q_a}}{i}$

Probability of both annotators picking the same category:

$$A_{e}^{\kappa} = \sum_{q} \frac{n_{A_{1}q}}{i} \cdot \frac{n_{A_{2}q}}{i} = \frac{1}{i^{2}} \sum_{q} n_{A_{1}q} n_{A_{2}q}$$

Karën Fort (karen.fort@inist.fr)

3

イロト イポト イヨト イヨト

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8 - 0.5}{1 - 0.5} = \textbf{0.6} \end{aligned}$$

$$\begin{aligned} &A_o = 0.8\\ &A_e^{\pi} = \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ &\pi = \frac{0.8 - 0.5}{1 - 0.5} = \textbf{0.6} \end{aligned}$$

イロト イヨト イヨト イヨト

æ

	Yes	No	Total	
Yes	20	5	25	_
No	5	20	25	
Total	25	25	50	

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6}\\ A_e^{\kappa} &= \frac{(\frac{25\times25}{50}) + (\frac{25\times25}{50})}{\kappa = \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6} \end{aligned}$$

$$A_o = 0.8$$

$$A_e^{\pi} = \frac{\left(\left(\frac{25+25}{2}\right)^2 + \left(\frac{25+25}{2}\right)^2\right)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

・ロン ・四 ・ ・ ヨン ・ ヨン

Karën Fort (karen.fort@inist.fr)

December 15, 2011

3

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	С	D	Total
Yes	20	5	0	0	25
No	5	20	0	0	25
С	0	0	0	0	0
D	0	0	0	0	0
Total	25	25	0	0	50

$$A_o = 0.8$$

$$A_e^{\pi} = \frac{\left(\left(\frac{25+25}{2}\right)^2 + \left(\frac{25+25}{2}\right)^2\right)}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

$$A_e^{\kappa} = \frac{\left(\frac{25\times25}{50}\right) + \left(\frac{25\times25}{50}\right)}{\kappa = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

$$A_{o} = 0.8$$

$$A_{e}^{\pi} = \frac{\left(\left(\frac{25+25}{2}\right)^{2} + \left(\frac{25+25}{2}\right)^{2}\right)}{50^{2}} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

$$A_{e}^{\kappa} = \frac{\left(\frac{25\times25}{50}\right) + \left(\frac{25\times25}{50}\right)}{50} = 0.5$$

$$\kappa = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

Karën Fort (karen.fort@inist.fr)

Inter-Annotator Agreements

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	Total
Yes	24	8	32
No	14	24	38
Total	38	32	70

$$A_o = 0.8$$

$$A_e^{\pi} = \frac{\left(\frac{25+25}{2}\right)^2 + \left(\frac{25+25}{2}\right)^2}{50^2} = 0.5$$

$$\pi = \frac{0.8 - 0.5}{1 - 0.5} = 0.6$$

$$\begin{aligned} A_o &= 0.68\\ A_e^{\pi} &= \frac{((\frac{38+32}{2})^2 + (\frac{32+38}{2})^2)}{70^2} = 0.5\\ \pi &= \frac{0.68-0.5}{1-0.5} = \textbf{0.36} \end{aligned}$$

<ロ> (日) (日) (日) (日) (日)

December 15, 2011

э

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	Total
Yes	24	8	32
No	14	24	38
Total	38	32	70

$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6}\\ A_e^{\kappa} &= \frac{(\frac{25\times25}{50}) + (\frac{25\times25}{50})}{\kappa = \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6} \end{aligned}$$

$$A_o = 0.68$$

$$A_e^{\pi} = \frac{\left(\frac{(38+32)}{2}^2 + \left(\frac{32+38}{2}\right)^2\right)}{70^2} = 0.5$$

$$\pi = \frac{0.68-0.5}{1-0.5} = 0.36$$

<ロ> (日) (日) (日) (日) (日)

Karën Fort (karen.fort@inist.fr)

December 15, 2011

3

	Yes	No	Total
Yes	20	5	25
No	5	20	25
Total	25	25	50

	Yes	No	Total
Yes	24	8	32
No	14	24	38
Total	38	32	70

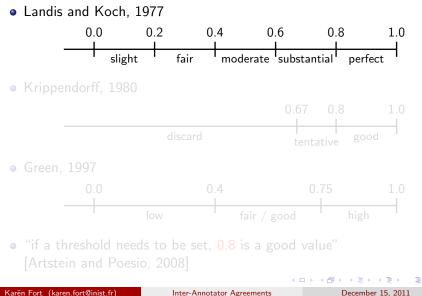
$$\begin{aligned} A_o &= 0.8\\ A_e^{\pi} &= \frac{((\frac{25+25}{2})^2 + (\frac{25+25}{2})^2)}{50^2} = 0.5\\ \pi &= \frac{0.8 - 0.5}{1 - 0.5} = \mathbf{0.6}\\ A_e^{\kappa} &= \frac{(\frac{25\times25}{50}) + (\frac{25\times25}{50})}{1 - 0.5} = \mathbf{0.6} \end{aligned}$$

$$\begin{aligned} & \mathcal{A}_o = 0.68\\ & \mathcal{A}_e^{\pi} = \frac{((\frac{38+32}{2})^2 + (\frac{32+38}{2})^2)}{70^2} = 0.5\\ & \pi = \frac{0.68-0.5}{1-0.5} = \mathbf{0.36}\\ & \mathcal{A}_e^{\kappa} = \frac{(\frac{38\times32}{70}) + (\frac{32\times38}{70})}{70} = 0.49\\ & \kappa = \frac{0.68-0.49}{1-0.49} = \mathbf{0.37} \end{aligned}$$

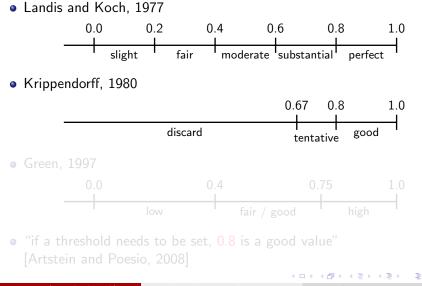
<ロ> (日) (日) (日) (日) (日)

Karën Fort (karen.fort@inist.fr)

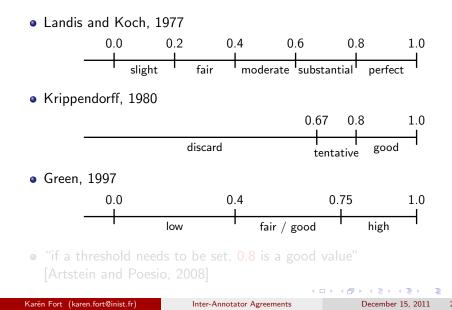
December 15, 2011

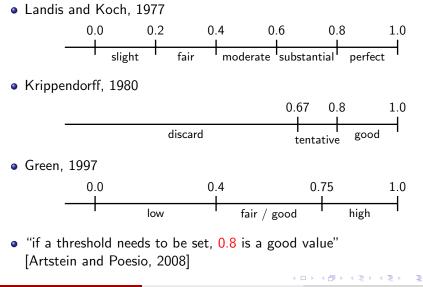

3

	κ Coefficient		
S, π and κ			
For any sample:			
	$egin{array}{l} A^\pi_e \geqslant A^S_e \ A^\pi_e \geqslant A^\kappa_e \end{array}$	$\pi \leqslant S \ \pi \leqslant \kappa$	
	$A_e^\pi \geqslant A_e^\kappa$	$\pi \leqslant \kappa$	
		(


What is a "good" κ (or π or S)?

æ


イロト イ団ト イヨト イヨト



Inter-Annotator Agreements

Karën Fort (karen.fort@inist.fr)

More Annotators?

Differences among coders are diluted when more coders are used.

- \bullet With many coders, difference between π and κ is small
- Another argument for using many coders

More than two annotators

Multiple annotators

Agreement is the proportion of agreeing pairs

ltem	Annot1	Annot2	Annot3	Annot4	Pairs
а	Boxcar	Tanker	Boxcar	Tanker	2/6
b	Tanker	Boxcar	Boxcar	Boxcar	3/6
с	Boxcar	Boxcar	Boxcar	Boxcar	6/6
d	Tanker	Engine2	Boxcar	Tanker	1/6
е	Engine2	Tanker	Boxcar	Engine1	0/6
f	Tanker	Tanker	Tanker	Tanker	6/6
g	Engine1	Engine1	Engine1	Engine1	6/6

When 3 of 4 coders agree, only 3 of 6 pairs agree...

28 / 32

- 4 同 6 4 日 6 4 日 6

Κ

Beware!

K is a generalization of π (not κ !)

Expected agreement

The probability of agreement for an arbitrary pair of coders.

Total number of judgments: N

Probability of arbitrary annotator picking a particular category q_a : $\frac{n_{q_a}}{N}$ Probability of two annotators picking a particular category q_a : $(\frac{n_{q_a}}{N})^2$

Probability of two arbitrary annotators picking the same category:

$$\mathcal{A}_e^{\pi} = \sum_q (rac{n_q}{N})^2 = rac{1}{N^2} \sum_q n_q^2$$

Inter-Annotator Agreements

Missing Points and Reflexions

I did not introduced the weighted coefficients, in particular α [Krippendorff, 2004]. If you are interested, have a look at [Artstein and Poesio, 2008].

There are ongoing reflexions on some issues, like:

- prevalence
- finding the "right" negative case (we'll see that in practical course)

- 4 週 ト - 4 三 ト - 4 三 ト

Conclusion

- Precision, recall, F-measure
- Accuracy
- Observed agreement
- *S*, *κ*, *π*
- More than 2 annotators

- Read carefully: [Hripcsak and Rothschild, 2005] (http://ukpmc.ac.uk/articles/PMC1090460)
- Apply the grid we saw in the second course to this article.

Artstein, R. and Poesio, M. (2008). Inter-Coder Agreement for Computational Linguistics. *Computational Linguistics*, 34(4):555–596.

Bennett, E. M., Alpert, R., and C.Goldstein, A. (1954). Communications through Limited Questioning. *Public Opinion Quarterly*, 18(3):303–308.

Brants, T. (2000).

Inter-annotator agreement for a german newspaper corpus. In In Proceedings of Second International Conference on Language Resources and Evaluation LREC-2000.

Cohen, J. (1960).

A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1):37–46.

Fort, K. and Sagot, B. (2010). Influence of Pre-annotation on POS-tagged Corpus Development.

32 / 32

In *Proc. of the Fourth ACL Linguistic Annotation Workshop*, Uppsala, Suède.

 Hripcsak, G. and Rothschild, A. S. (2005).
 Agreement, the f measure, and reliability in information retrieval. J Am Med Inform Assoc., 12(3):296â8.

Krippendorff, K. (2004).

Content Analysis: An Introduction to Its Methodology, second edition, chapter 11.

Sage, Thousand Oaks, CA.

Reidsma, D. and Carletta, J. (2008). Reliability Measurement Without Limits. *Computational Linguistics*, 34(3):319–326.

Scott, W. A. (1955). Reliability of Content Analysis : The Case of Nominal Scale Coding. Public Opinion Quaterly, 19(3):321–325.

🔋 Véronis, J. (2001).

- 3

32 / 32

イロト イポト イヨト イヨト

Sense tagging: does it make sense?

In Corpus Linguistics Conference, Lancaster, Angleterre.

3

イロト イヨト イヨト